SOFIA

Autonomous Filtration Operational System

Water sampler for the field

Microbia Environnement +33(0)4 68 36 15 52 contact@microbiaenvironnement.com

SOFiA is a handy peristaltic pump coupled with a filtration system for fast and standardized sampling of surface water. The device is lightweight, portable, rugged, easy to use, water-resistant and requires minimal maintenance.

Coming with a 2.5h-autonomy battery and a carrying case, it is usable for field work in a wide range of environments: rivers, lake, ponds, costal and sea waters, directly in water or from banks, platforms, boats etc.

Key-Benefits of coupled sampling/filtration

Standardization of water volumes Water samples concentrated onto filters Adaptability of filters

- > higher monitoring data quality
- > reduction volume/cost of transportation
- > multiple applications

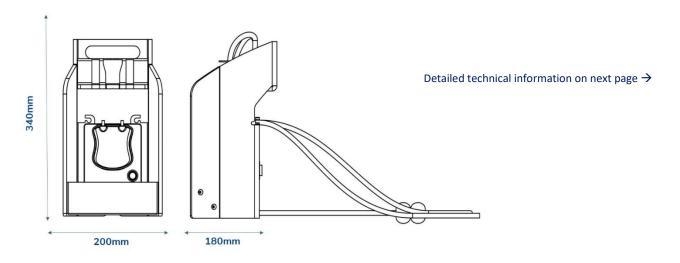
Filters	Applications	
PC, PVDF, cellulose	Molecular biology, metagenomics, transcriptomics, proteomics	
Glass microfiber G/FC	Analyses of chemicals, toxins, pigments etc	
Mixed cellulose ester	Cell culture – colony counting	
No filter	Cell enumeration	

Technical information

Medical grade tubing/pipes Battery: 2.5h autonomy

Flow: 1L/min

Outlet flow pressure: 40psi


Weight: 2.2 kg

Accessories

Floats, inlet filter
Battery charger and plug
Filter-holders for Ø 47-mm filters

Robust carrying case

••• Price: from 1,200€ (excl. tax.) - also available for rental.

Performance data	Unit			
Flow rate	ml/min	1000 +/-8%		
Flow direction		CW/CCW Reversible		
Pump head material		Transparent PC		
Output fluid pressure	psi	40 min		
Recommended loading fluid pressure	psi	18		
Input resistant pressure	psi	2.0 min		
Vacuum suction	Кра	30 min		
Current @ rate flow	Α	1.0 max		
Operation temperature (environment)	°C	-10 ∼ +50		
Storage temperature (environment)	°C	-10 ~ +70		
Loading noise (testing distance 30 cm)	dB	77 max		
Net weight	kg	2.2		
Outline dimension	mm	340(H) x 200 (L) x 180 (W)		
Electrical data				
Battery capacity	mA	2600		
Battery voltage	V	14.4		
Charging voltage	V	16.8 ± 0.2		
Charging current	Α	1.3		
Charging method		CC-CV		
Accessories (included)				
Storage case material		Orange PC		
Storage case dimension	mm	430(L) x 300(W) x 220 (H)		
External tubes material		Transparent FDA Silicon		
External tube diameter (internal/external)	mm	6/10		
External tube length	mm	100		
Accessories (in full-option version only)				
In-line filter-holder number and material		2x Transparent PC		
In-line filter-holder diameter	mm	50		
Filter-holder sterilization	°C	121 (Autoclave)		
External tube length	mm	2000		
Float Number and material		2x White/Orange, PC		
Float internal/external diameter	mm	12/75		

Microbia Environnement is a biotechnology company expert in environmental microbiology that develops innovative molecular biology tools (genetic biosensors) for the early detection of toxigenic microalgae and cyanobacteria responsible of harmful algal blooms in freshwater, brackish and marine ecosystems. As water sampling is crucial for the deployment of such powerful technologies, the SOFIA system has been designed to optimize the collection of microorganisms and their genetic material from environmental water. Beyond that specific use, the filtering system of SOFIA is easily adaptable to an water quality analytic workflows.